
International Journal of Heat and Mass Transfer 52 (2009) 3585–3594
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
Three-dimensional polymer melt flow in sudden expansions: Non-isothermal
flow topology

P.S.B. Zdanski *, M. Vaz Jr.
Department of Mechanical Engineering, State University of Santa Catarina, Campus Universitário Prof. Avelino Marcante, Joinville-SC 89223-100, Brazil

a r t i c l e i n f o a b s t r a c t
Article history:
Received 13 November 2008
Received in revised form 12 March 2009
Accepted 12 March 2009
Available online 17 April 2009

Keywords:
Non-Newtonian flow
Viscous heating
Three-dimensional sudden expansion
Numerical simulation
0017-9310/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.ijheatmasstransfer.2009.03.004

* Corresponding author. Tel.: +55 47 40097971; fax
E-mail address: zdanski@joinville.udesc.br (P.S.B. Z
Three-dimensional, non-isothermal, polymer melt flow in sudden expansion is numerically investigated.
The main goal of the paper is to study the general features of the flow field. The generalized Newtonian
formulation is adopted, and the mathematical model corresponds to the laminar, incompressible Navier–
Stokes equations. A second order finite difference scheme is used to discretize the governing equations in
a collocated mesh. The non-Newtonian flow behaviour is modelled by the Cross constitutive relation, in
which temperature effects are accounted for. The simulations show that, despite the high viscosity exhib-
ited by polymer melts, a complex three-dimensional flow structure is found close to the expansion sec-
tion, characterized by a spiral motion. The results also indicate that viscous dissipation causes limited
effect in temperature rise and viscosity variations. The latter was found mostly affected by the shear rate.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Polymer melt flow in sudden expansions is frequently found in
industrial operations such as injection moulding. Along with its
interest as a benchmark problem for testing numerical schemes,
this flow geometry has instigated researchers on understanding
new physical aspects of the flow dynamics. The available literature
data is mainly devoted to 2D analysis and there is relatively little
information on three-dimensional flows. In addition, most works
adopt an isothermal approach, thereby precluding the influences
of the mould and injection temperatures and analysis of the vis-
cous heating (caused by the high fluid viscosity), amongst other
thermal effects. Therefore, this study aims at elucidating the com-
plex flow pattern exhibited by the non-isothermal 3D flow in plane
asymmetric sudden expansions. The paper discusses typical results
for this class of coupled and nonlinear problems such as recircula-
tion and vortical characteristics, temperature and viscosity distri-
butions. Markedly, the nonlinear character of the material
constitutive relation and the thermally dependent viscous behav-
iour contrast with similar studies available in the literature for
Newtonian fluids, mostly air flow.

Fluid flow in sudden expansions is characterized by the exis-
tence of recirculation regions and steep properties variations, being
a challenge for any numerical scheme. The literature shows many
recent works on the analysis of 2D power-law fluids in sudden
expansions, most of which dealing with hydrodynamic instabilities
ll rights reserved.
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(bifurcation) that may occur at some critical Reynolds number [1–
4]. In this case, bifurcation is said to occur when a transition from a
symmetric to an asymmetric flow topology in symmetrical sudden
expansions takes place. Pinho et al. [5] presented a study on pres-
sure losses and reattachment length for the laminar power-law,
non-Newtonian flows in 2D sudden expansions. The authors ad-
dressed the influences of the power-law index on such flow param-
eters. Issues related to pressure losses in contraction/expansion
flows were also discussed by Binding et al. [6] using the Oldroyd-
B fluid model to describe the non-Newtonian flow behaviour.
Interestingly, most works are focused on applications using rela-
tively large Reynolds numbers, which are typical of polymeric solu-
tions or other non-Newtonian fluids, but exceedingly high for
polymer melts.

Two-dimensional sudden expansions were also adopted by Bao
[7] and Vaz Jr. and Zdanski [8] to validate their numerical schemes
(finite elements and finite differences, respectively). Both works
used the generalised Newtonian approach and were able to cap-
ture the same steady-state flow topology, i.e., a confined recircula-
tion region at the concave corner. Furthermore, a control volume/
finite element method was employed by Chen and Hsu [9], where
the unsteady polymer melt flow in the mold filing stage is simu-
lated. It is worth mentioning that all aforementioned works, except
for reference [8], considered isothermal flow field. Wachs et al. [10]
presented an interesting study on the thermal effects in 2D con-
traction flows. The authors compared isothermal and non-isother-
mal flow solutions and discussed some important issues regarding
distinct constitutive models. Considerations on the thermal effects
(including viscous heating), influences of the expansion ratio on
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Nomenclature

A channel cross section A = W � H (m2)
AR aspect ratio AR = W/S
c specific heat (J/kgK)
ER expansion ratio ER = H/h
h channel thickness upstream of the expansion section

(m)
H channel thickness downstream of the expansion section

(m)
k thermal conductivity (W/mK)
l channel length upstream of the expansion section (m)
L channel length downstream of the expansion section

(m)
S step height (m)
T temperature (K)
Tb bulk temperature, Tb ¼ 1= ðA � UbarÞ

R
T � udA (K)

Tin temperature at the inlet section (K)
Tw temperature at the wall (K)
Ubar mean velocity, Ubar ¼ 1=A

R
u dA (m/s)

ui, uj velocity components (m/s)
uin velocity at the inlet section (m/s)
W channel width (m)
xi, xj Cartesian coordinates

Greek letters
q specific mass (kg m�3)
l dynamic viscosity (N s m�2)
g apparent viscosity (N s m�2)
�g average apparent viscosity, �g ¼ 1=A

R
gdA (N s m�2)

_c equivalent shear rate (s�1)

Subscripts
i, j indexes
in inlet
w wall
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pressure variations in 2D expansion flows and sensitivity analysis
to the model parameters were presented by Zdanski and Vaz Jr.
[11]. Temperature-dependent Cross and Power-Law Modified
Arrhenius models were used to describe the non-Newtonian flow
behaviour.

Three-dimensional expansion flows of polymer melts described
by the generalized Newtonian model have received little attention.
To the authors’ best knowledge, the thermal effects on 3D expan-
sion flows accounting for the viscous heating phenomenon have
not been fully explained. Contrastingly, the literature shows
increasing interest on 3D simulation of Newtonian flows. A range
of physical aspects has been addressed for Newtonian flows based
on numerical and experimental works in recent years. Armaly et al.
[12] and Nie and Armaly [13,14] performed both experimental and
numerical studies on 3D expansion flows, from which important
hydrodynamic features were explored, such as the xu-line defini-
tion and its dependence on the Reynolds number (see Section 3.2
for further details). Saldana et al. [15] analysed numerically heat
transfer aspects of laminar flow of air in 3D expansions, where
which some issues related to the Nusselt number distribution were
addressed. More recently, Casarsa and Giannattasio [16] presented
experimental PIV (Particle Image Velocimetry) results for turbulent
mean flow of air in 3D expansions. The authors reported results for
mean velocities and turbulent fluctuations and presented a com-
prehensive discussion on the 3D mean flow topology based on
the analysis of streamlines at different 2D planes.

Measurement of local flow parameters, such as velocity and
temperature distributions, in polymer melt flow is virtually impos-
sible with the current technology. Therefore, understanding and
analysis of the physics of the flow rely mostly on numerical simu-
lation. In this sense, the present work discusses physical aspects of
polymer melt flow in 3D sudden expansions. The flow topology
(streamlines) and property distributions (temperature and viscos-
ity) are addressed. The numerical scheme is based on central sec-
ond order accurate finite difference formulae. The capability of
the computational scheme to handle 2D non-Newtonian flows
has been previously demonstrated in Vaz Jr. and Zdanski [8] and
Zdanski and Vaz Jr. [17,18]. The validation (and verification) for
solving 3D flows is also reported in the present study. The main
results comprise streamlines and property contours (temperature
and viscosity), indicating the presence of a highly three-dimen-
sional vortical structure at the expansion section. As for Newtonian
flows, such three-dimensional structure exhibits a complex spiral
motion (backward to step and towards channel centre).

2. Theoretical formulation

2.1. Governing equations

Polymer melt flow in injection moulding can be described by
the generalized Newtonian formulation. This approach solves the
non-Newtonian flow by combining the same set of equations used
for Newtonian flows and a nonlinear constitutive relation for vis-
cosities (apparent viscosity). The latter describes the behaviour of
a particular polymer as function of the shear strain rate and tem-
perature. This strategy is largely used when stress relaxation and
elastic effects in the polymer melts are negligible. The numerical
formulation and discretization scheme contemplate only a stea-
dy-state flow condition. The mass, momentum and energy conser-
vation laws for laminar flow, written in conservation law form, are
given by

@ui

@xi
¼ 0; ð1Þ
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where i, j = 1, . . ., 3 represent indicial notation and g is the apparent
viscosity. The last term of Eq. (3) models the viscous heating effect,
i.e., the conversion of mechanical energy into heat due to intrinsic
friction within the flow. The Cross model is adopted for computing
the apparent viscosity,

gðT; _cÞ ¼ g0ðTÞ
1þ ½kðTÞ _c�1�nðTÞ ; ð4Þ

where

g0ðTÞ ¼ a1 exp
a2

T

� �
; kðTÞ ¼ b1 exp

b2

T

� �
and

nðTÞ ¼ c1 exp � c2
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Pedro Bom et al. [19] adopt the following set of values:
a1 = 0.022603 Pa s, a2 = 5003.01 K, b1 = 1.6425 � 10�6 s, b2 =
3901.0 K, c1 = 1.3574, c2 = 653.73 K. Furthermore, for this specific
polymer, the thermo-physical properties used in the simulations
are specific mass (q = 1143.9 kg/m3), thermal conductivity
(k = 0.31 W/mK) and specific heat (c = 2420.0 J/kgK).

The preceding constitutive relation describes the behaviour of a
commercial polymer Poliacetal POM-M90-44. The term _c in Eqs.
(2)–(4), stands for the equivalent shear rate, and reads

_c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

@ui

@xj
þ @uj

@xi

� �2
s

: ð6Þ

For validation purposes, the same set of equations are used to
model viscous laminar incompressible Newtonian flows by assum-
ing g = l in Eqs. (1)–(3). The term l is the classical dynamic viscos-
ity and represents a macroscopic property of a particular
Newtonian fluid. All the remaining symbols in the preceding
expressions are completely standardized in literature and are given
in the nomenclature.

2.2. Numerical modelling

The conservation laws presented in Eqs. (1)–(3) are non-linear
and fully coupled, representing a set of five equations for the un-
knowns, i.e., three velocity components (u, v and w), temperature
(T) and pressure (p). Velocities and temperatures are determined
by the momentum and energy equations, respectively. Therefore,
the continuity equation, that establishes null divergent for the
velocity field, is transformed into an equation for pressure. This
is the classical problem known in literature as pressure–velocity
coupling, typically found when devising numerical strategies for
solving incompressible flows. The method adopted in this work is
an extension for 3D flows of the 2D formulation presented in
Vaz Jr. and Zdanski [8], where a Poisson equation for pressure is
solved to assure a divergence-free velocity field. In addition,
central finite difference formulae were adopted to discretize both
convective and diffusive terms of the governing equations. The
variables are arranged in a collocated mesh, and artificial viscosity
terms are added externally to control the odd–even decoupling
problem. The time evolution is accomplished by the implicit Euler
method combined with a pseudo-transient march, aiming at a
steady-state solution. For the 2D approach, the reader is referred
to reference [8] for further discussions on the computational
methodology. Its extension to 3D flows will be discussed elsewhere
in a forum dedicated to computational modelling. Notwithstanding,
some comparative studies are provided in this work in order to
ascertain credibility of the numerical results.

3. Results and discussions

3.1. Problem statement and boundary conditions

The present work aims at studying the non-Newtonian 3D
flow in a plane channel with asymmetric sudden expansion.
L 

W 

H 

h 
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y z 

s 

Fig. 1. Geometry representation with its main dimensions.
The geometry with its mains dimensions is depicted in Fig. 1.
The origin of the Cartesian system is placed at the expansion
section in the middle span. The computational domain extends
‘ = 3S upstream of the expansion section, where the plug flow
is assumed, i.e., constant x-velocity, u(x = �‘) = uin, and null y-
and z-velocity components. A uniform temperature is also im-
posed at the inlet plane, T(x = �‘) = Tin. The pressure at the inlet
section is extrapolated from inside points, where a linear varia-
tion is assumed. The channel length downstream of the expan-
sion section is assumed L = 40S. This distance ensures that exit
boundary conditions (non-reflexive null derivative for all vari-
ables) do not affect numerical results. The expansion ratio of
the channel (ER = H/h) is assumed equal to 2, being the channel
thickness upstream and downstream of the expansion section
h = 2 mm and H = 4 mm, respectively. The aspect ratio of the
channel (AR = W/S) is assumed equal to 4. The channel positions
y = S (upstream of the expansion), y = 0 (downstream of the
step), y = H and z = ±W/2 comprise solid walls. The boundary con-
ditions at the walls correspond to non-slip for velocities, known
values for temperatures (Tw) and null derivatives for pressure.

The computational mesh adopted in the simulations is non-uni-
form in the x-direction, with point clustering near the expansion
section. The maximum stretching factor used is around 4%. In the
y- and z-directions the mesh size is uniform. The region upstream
of the expansion section (�‘ 6 x 6 0, S 6 y 6 H, �W/2 6 z 6W/2)
is mapped by 21 � 31 � 101 grid points, whilst the downstream
region (0 6 x 6 L, 0 6 y 6 H, �W/2 6 z 6W/2) is divided into
101 � 61 � 101 nodes. The full computational domain comprises
688,012 grid points.
3.2. Validation and verification

The process of comparing a given numerical solution against
experimental data is known in literature as validation. Otherwise,
if a numerical solution is confronted against theoretical results,
the procedure is generally referred as verification [20]. Therefore,
the verification/validation process using benchmark problems is
important for credibility of a numerical solution. The numerical
scheme adopted in the present analysis was extensively tested in
authors’ previous works dealing with non-Newtonian 2D problems
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Fig. 2. Xu-line distribution along the spanwise direction.
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Fig. 3. Non-dimensional temperature and streamwise velocity: 2D finite element
solution (FEM) vs. 3D finite difference solution (FDM) along the channel centre line
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[8,11,17,18]. This section presents a 3D validation/verification aim-
ing at showing the capability of the scheme to handle this class of
flow.

Experimental information, especially local velocities and tem-
peratures, regarding polymer melts is scarce or even non-existent
in the literature. Therefore, for validation of the numerical scheme,
the Newtonian flow of air in a 3D expansion was considered. This
flow geometry was studied by Armaly et al. [12], who reported
experimental results for the laminar regime. The same geometry
was also simulated recently by Saldana et al. [15]. Comparisons
of the solutions are presented in Fig. 2 for a Reynolds number,
Re = (2quinS)/l = 98.5. The physical parameter chosen is the xu-line
distribution along the spanwise direction. According to Armaly
et al. [12], the xu-line is the location on the stepped wall (y = 0)
where the streamwise component of the wall shear stress [l(ou/
oy)y = 0] is equal to zero. This position is identified by locating along
the x axis the region where the streamwise velocity component (u)
changes sign from negative to positive (i.e. u = 0.0) at the closest
parallel plane to the stepped wall (y = 0). Following Saldana et al.
[15], the location is taken at the first node along the streamwise
direction where the x-velocity component changes sign to positive.
This procedure is normally used to identify the reattachment
length for 2D separated flows. In addition, a close agreement of
such parameter indicates also agreement of the flow recirculation
topology and velocity distributions in the critical regions. Notice-
ably, the xu-line presents variations in the spanwise direction due
to the high three-dimensionality of the flow close the step. This
feature can be identified in Fig. 2, which shows the results provided
by Refs. [12,15] and the present work. It has been found that, from
the channel centre (z/(W/2) = 0.0), there is a smooth decrease of xu-
line to a local minimum around position z/(W/2) = ±0.75, followed
by a sharp increase near the lateral channel walls (z/(W/
2) = ±1.00). The overall agreement of the present solution with
Refs. [12,15] is satisfactory, being the differences mainly credit to
two aspects: (i) the experimental data from Armaly et al. [12]
and the numerical results of Saldana et al. [15] indicate the inlet
velocity at different locations. The former does not inform the loca-
tion where the boundary condition is imposed; it is mentioned
only that the experiments yield a fully developed profile at the
expansion session (at x = 0 in Fig. 2) without giving further details
on the actual velocity distribution values. In Ref. [15], a fully devel-
oped profile is imposed at the channel entrance (at x = �‘ in Fig. 2).
The present solution adopts a uniform velocity distribution at the
channel entrance (u = uin, v = 0, w = 0) at x = �‘; (ii) the numerical
solution of Saldana et al. [15] is based on the SIMPLER algorithm
[21], which is a first order upwind scheme, whereas the present
solution is obtained using a second order accurate finite difference
scheme [8].

The second test for verification purposes compares the pres-
ent 3D non-isothermal, non-Newtonian scheme to solutions ob-
tained using 2D finite elements for fully developed flows. The
physical problem constitutes a polymer melt flow in a long duct
with a square section W = H. The apparent viscosity is defined by
the Cross constitutive relation (see Eqs. (4) and (5)). The present
method solves the 3D flow entry problem with velocity and tem-
perature distributions reaching fully developed conditions to-
wards the exit section. The finite element approximation is
based on a 2D fully developed flow model (see [22] for further
details on the numerical description) and provides solutions for
velocities and temperatures for the fully developed flow section.
The main results are presented in Fig. 3 for non-dimensional
velocity and temperature profiles along the z-axis at y = H/2. It
has been observed that the agreement between both numerical
solutions is quite satisfactory for velocities and temperatures.
Differences between non-dimensional solutions are also pre-
sented in Fig. 3. In both cases, the largest differences are found
close to the walls and at the channel centre, distributed in a
symmetrical pattern.

3.3. Physical analysis

The fluid viscosity exhibited by polymer melts is exceedingly
higher than common Newtonian fluids such as air, water or oil.
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Therefore, the characteristic Reynolds number of the problem is
typically low, ranging around 10�4–10�3 [17,18], thereby favouring
a laminar flow regime. The velocities (and flow rates) prescribed at
the inlet channel section correspond to values normally used in
industrial injection problems. The present work aims at studying
the basic physical features of the polymer flow without loosing
the practical aspect of the problem. The results and discussions
presented in this section comprise the flow topology (streamlines
are computed by the projection of the velocity field in given 2D
planes), property distributions (temperature and viscosity contour
plots) and xu-line and xw-line variations along the spanwise direc-
tion. The 2D planes along x, y and z directions are represented in
Fig. 4, where the nomenclature is defined. The analysis is restricted
to the region close to the expansion section where the flow is
highly three-dimensional.

According to Armaly et al. [12], for 3D laminar Newtonian flows,
the xu-line depends upon the Reynolds number. Aiming at assess-
ing such findings for polymer melts, the xu-line distribution is pre-
sented in Fig. 5. In this case, location of u = 0 is determined by a
linear interpolation between positions of the closest nodes to the
sign change of the u velocity component. The results comprise
two inlet velocities uin = 6 cm/s and 12 cm/s, which correspond to
Reynolds numbers, Re ¼ ðquinSÞ=�g ¼ 1:3� 10�4 and 3.0 � 10�4,
respectively. The temperature boundary conditions at the solid
walls and inlet section are Tw = Tin = 453.0 K. The term �g is the aver-
age apparent viscosity evaluated at the channel exit section (x = L).
It is interesting to mention that such definition is used in an at-
tempt to better capture the shear rate and viscous effect (which
in turn affect the Reynolds number). The average apparent viscos-
ity is, therefore, computed at a given cross-section, which, in the
present case, corresponds to the channel exit section (where the
flow variables reach nearly fully developed conditions). The results
of Fig. 5 reveal that the xu-line for polymer melts presents similar
tendency to Newtonian flows, i.e., from the channel centre (z/(W/
2) = 0.00) there is a smooth decrease to a local minimum around
z/(W/2) = ±0.72, followed by a sharp increase in the vicinity of
the lateral channel walls (z/(W/2) = ±1.00). Otherwise, the influ-
ence of the Reynolds number is moderate, being felt only in the
core region around the middle span.

Aiming at a better understanding the physics of the flow, the
xw-line distribution is presented also in Fig. 5. The xw-line is the lo-
cus close to the stepped wall (y = 0) where the spanwise compo-
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Fig. 5. Xu-line and xw-line distributions along the spanwise direction.
nent of wall shear stress is zero, e.g., l(ow/oy)y = 0. This point is
identified by observing the position along z direction where the
w-velocity component changes sign (i.e. w = 0). Furthermore, the
position where the xu-line intercepts xw-line defines the region
where the equivalent wall shear stress is null [15]. The results of
Fig. 5 show that, for the present polymer rheology and flow rates,
this point is located around x/S = 0.29 and z/(W/2.0) = ±0.90. More
details and new physical insights relating to this point will be pro-
vided further in the text.

Streamline maps, temperature and viscosity contours at se-
lected 2D planes in x, y and z directions are reported in Figs.
6–12, from which the physics of the flow near the step (expan-
sion section) is discussed. Due to their 3D nature, streamlines
shown in Figs. 6–8 are computed from the projection of the
velocity field in different locations on the x–y, x–z and y–z
planes. The velocity and temperature boundary conditions for
this simulation corresponds to uin = 6 cm/s, Tin = Tw = 453.0 K.
Since the wall and inlet temperatures are the same, any temper-
ature increase in the domain is due only to flow friction (viscous
heating effect).

The 3D flow topology is discussed by analysing the 2D planes in
x, y and z directions indicated in Fig. 4. Firstly, streamlines for x–y
planes are presented in Fig. 6. The three planes in the spanwise
direction (z1, z2 and z3) show the flow topology from the step (x/
S = 0) until a section taken around x/S = 2.2. It is relevant to men-
tion that, in the plane at the middle span (z1), the flow topology
is qualitatively similar to the 2D expansion flows [7,8]. A confined
vortex is detected in the concave corner with dimensions around x/
S = 0.28 and y/S = 0.32. The same flow topology is found for the z2
plane (z/S = 1.0), in which a small reduction of the vortex dimen-
sions is observed. Finally, for the z3 plane, the physical picture is
drastically changed: near the lateral wall (z/S = ±1.92), no vortex
zone can be detected in the 2D x–y plane. The flow in this plane
is upstream (u negative) from x/S = 0 (step) until around
x/S = 0.32. The z3 plane is placed in the region where the three-
dimensional effects are more relevant. The positions x/S = 0,
y/S = 0 and z/S = ±2 correspond to the interception of three walls
defining a three dimensional concave corner.

The streamlines at x–z sections are presented in Fig. 7 for planes
y1, y2 and y3. The section y1 corresponds to y/S = 0.03, i.e., the first
computational point away from the stepped wall (y/S = 0.0). This
particular plane intercepts the recirculation zone found at the x–
y sections, and helps to clarify important aspects about the 3D flow
topology. (i) Firstly, the flow symmetry around z/S = 0 (middle
span): this aspect evinces that the numerical solution converged
to a possible physical solution, since at such low Reynolds number
no flow bifurcation takes place. (ii) The region of reverse flow in
the x-direction (u negative) is clearly detected along the spanwise
direction. It is worth noting that the line along z direction where
streamlines emerge (see Fig. 7) corresponds exactly to the xu-line
plotted in Fig. 5. In this region, the flow is highly three-dimen-
sional, i.e., u is negative and w is found to be deflected from lateral
walls and pulled towards the channel centre. Therefore, the fluid
particles in this recirculation zone present a spiral motion. (iii) Fi-
nally, there is a particular position in this plane (the nearest plane
to the stepped wall) where the equivalent wall shear stress is null
(u and w velocity components are zero). From analysis of Fig. 5, this
point is located around x/S = 0.29 and z /(W/2.0) = ±0.90 (position
where the xu-line intercepts the xw-line). In the x–y plane repre-
sented in Fig. 7a, these positions can be easily located at
x/S = 0.29 and z/S = ±1.8. Therefore, such analysis provides key in-
sights on the 3D flow behaviour in the vicinity of the stepped wall:
the locations where u = w = 0.0 are the only regions in the y1 plane
where the velocity vector points downward and is normal to the
stepped wall, i.e, these positions mean the origin of all streamlines
(as observed in Fig. 7).
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The streamlines for planes y2 and y3 are also presented in Figs.
7b and 7c: (i) The section y2 corresponds to y/S = 0.5 and shows
that, near expansion section (0.0 < x/S < 0.5), the flow is deflected
from lateral walls towards the channel centre. Further along the
downstream direction (x/S > 0.5), the streamlines become nearly
parallel to the lateral walls (the w velocity component is very
small). No recirculation zone is observed in the y2 plane. (ii) The
plane y3 corresponds to a position y/S = 1.5 and shows a region
where the flow is basically along the x direction (w velocity compo-
nent is very small).

Fig. 8 shows the streamlines for z–y planes, namely x1
(x/S = 0.14) and x2 (x/S = 0.92). The attention is focused on the step
section since v and w velocity components decrease sharply to
nearly zero around a position x/S = 1.5. (i) The x1 plane intercepts
the recirculation zone observed in Figs. 6 and 7, showing a down-
ward flow towards the stepped wall (v negative) and deflected
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from lateral walls to the channel centre. All streamlines merge to a
point at the middle span located at z/S = 0.0 and y/S = 0.13. It is
interesting to observe in Fig. 6 that the point on the z1 plane placed
at x/S = 0.14 and y/S = 0.13 represents the centre of the recircula-
tion zone. (ii) The plane x2 is placed further in the downstream
direction and shows a distinct pattern close to the lateral and
stepped walls (y/S = 0.0 and z/S = ±2.0); The w velocity component
in this region is in opposite direction, i.e., the flow is deflected to-
wards the lateral walls the same conclusion may be drawn from
observing Fig. 7a for the y1 plane.

Remark. Based on the discussions of the preceding paragraphs for
distinct 2D planes (Figs. 6–8), a realistic picture of the 3D flow
topology may be constructed. (i) The flow topology is highly three-
dimensional only close to the expansion section (0.0 < x/S < 1.5).
(ii) In addition, only one recirculation region is identified, as
observed in Figs. 6 and 7 for z1, z2 and y1 planes. This vortex
structure resembles a spiral, being well defined from the middle
span region (z/S = 0.0) up to z/S = ±1.80. (iii) In the regions near the
lateral and stepped walls the w velocity component presents
opposite behaviour (see Fig. 8 for planes x1 and x2). In the vortex
region, due to the spiral motion, the fluid particles are pulled down
towards the channel centre, whilst a little further downstream the
fluid particles are pushed towards the lateral walls. In spite of this
change in flow direction, no well-defined recirculation region was
detected near the lateral walls, as shown in Figs. 7 and 8.

The temperature distributions for x–y planes z1 and z3 are pre-
sented in Fig. 9. The figure shows temperature increments relative
to the wall temperature, DT = T(x,y,z) � Tw, i.e., the temperature
increment is due to the viscous heating effect since Tin = Tw is as-
sumed in this example. In the plane z1 (z/S = 0.0), the maximum
temperature rise takes place near the upper wall (y/S � 1.8) and
in the region further downstream of the convex corner (x/S = 0.0
and y/S = 1.0). The flow topology in these regions shows stream-
lines highly deflected (see Fig. 6), indicating significant velocity
gradients, which in turn, produces higher shear rates. Despite the
smaller absolute differences, the temperature distribution for z3
plane is drastically changed, since this section is placed at the
neighbourhood of a lateral wall (z/S = ±1.92). The maximum tem-
perature increment in the z3 plane is found near the step around
the point x/S = 0.2 and y/S = 1.5. It is interesting to observe that,
in the z1 plane, this position presents exactly the minimum tem-
perature rise. Clearly, the location y/S = 1.5 on the z3 plane corre-
sponds to a region where the flow is pushed from the lateral
walls towards the channel centre due to the spiral motion effect
in the vortex zone. Otherwise, at the same position on the z1 plane,
the flow is nearly two-dimensional with lower shear rates [8,11].
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The contour levels for viscosities are also presented in Fig. 9 for
z1 and z3 planes. In spite of the strong temperature dependency
(see Eqs. (4) and (5)), for the present flow rate and channel geom-
etry, viscosity variations are dominated by the equivalent shear
rate, i.e., at a given inlet/wall temperature, the small viscous heat-
ing leads to an also small temperature increase (temperature in-
crease in these planes is less than 1.0 K). The maximum values of
viscosity on the z1 plane are found near the channel centre and
concave corner, whereas, for the z3 plane, the maximum viscosity
is found near the concave corner. Both regions present low shear
rates. Notwithstanding, the polymer flow presents huge viscosity
variations (a markedly non-Newtonian behaviour) in all regions
of the problem domain.

Fig. 10 presents temperature contour levels for x–z planes y1, y2
and y3, from which symmetry about the middle span plane (z/
S = 0) can be observed. Firstly, the maximum temperature rise
due to viscous heating effect occurs at the y2 plane, near the mid-
dle span. This section (y/S = 0.5) intercepts the region with higher
temperature increment captured also on the z1 plane (z/S = 0.0).
The plane y1, however, intercepts the region near the stepped wall
with low velocities. The temperatures for this section exhibit a
continuous increase from the lateral walls and step towards the
channel centre at middle span (z/S = 0.0). The viscous heating effect
at y1 plane is less pronounced. Finally, the y3 plane intercepts a re-
gion where the flow is nearly uniform at its core. The maximum
temperature rise in this plane takes place near the lateral walls
close to the expansion section (the region where the shear rate is
higher). This region can be easily identified in Fig. 9b for the z3
plane at the neighbourhood of y/S = 1.5. The viscosity contours
for the same x–z planes are plotted in Fig. 11. For plane y1, the vis-
cosity distribution is exactly opposed to the temperature behav-
iour (see Figs. 10a and 11a): the minimum values for viscosities
are found in the region of maximum temperature increments. Both
y2 and y3 planes intercept regions of higher shear rate, and, conse-
quently, lower viscosities.

Fig. 12 presents temperature and viscosity contours for z–y
planes. The x1 plane intercepts the region near expansion section
(x/S = 0.14) and clearly shows that the core region (around y/
S = 1.5) is little affected by the viscous heating. However, the re-
gions at the middle span (z/S = 0.0), near the step (y/S < 1.0) and
upper wall (y/S = 2.0), present larger temperature increments due
to the high curvature of the streamlines (see Fig. 6 for z1 plane).
Further in the downstream direction, for x2 plane (x/S = 0.92), the
temperature distribution is almost symmetric about z- and y-axes,
i.e., maximum temperature rise near the four solid walls in the re-
gions of higher shear rates. This is an indication that the flow is
evolving towards a fully developed condition. When the fully
developed flow is reached, the maximum temperatures are at the
channel centre and the polymer flow is said to attain the equilib-
rium regime, i.e., all heat generated due to viscous heating is trans-
ferred transversally to the solid walls [17,18]. In addition to
temperatures, Fig. 12 presents also viscosity distributions. Viscosi-
ties at the x1 plane (x/S = 0.14) are generally smaller then those at
the x2 plane (x/S = 0.92) due to the higher shear rate (larger veloc-
ity variations) near the step. Viscosity distribution at the x2 plane
reflects the tendency of the flow to follow the topology of a rectan-
gular channel: large viscosities at the corners and channel core
(due to smaller shear rates).

4. Concluding remarks

Three dimensional, steady state polymer melt flow in sudden
expansion was investigated using a computational scheme based
on finite differences. Validation and verification were performed
by comparing, respectively, experimental data for Newtonian flow
in a similar channel, and numerical results for a fully developed
polymer melt flow in a rectangular channel.

The 3D flow topology was discussed based on 2D streamlines
maps for x, y and z directions. The main findings are as follows:
(i) The flow is highly three-dimensional only close to the expansion
section (0.0 < x/S < 1.5). (ii) Only one recirculation zone, resembling
a spiral, is identified (see Figs. 6 and 7 for z1, z2 and y1 planes),
being well-defined from the middle span region (z/S = 0.0) up to
z/S = ±1.80. (iii) In this vortex region, due to the spiral motion,
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the fluid particles are pulled down towards the channel centre,
whilst a little further downstream, the fluid particles are pushed
towards the lateral walls. In spite of this change in flow direction
(w velocity component changes sign), no well-defined recircula-
tion region was detected near the lateral walls (Figs. 7 and 8).

Despite the strong influence of the inlet and wall temperatures
on viscosities, the effect of temperature rise due to viscous heating
is rather limited in the present case (the maximum temperature
rise is less then 1.0 K, being most evident in regions of deflected
streamlines – or higher shear rates). On the other hand, the tem-
perature solution, given by Eq. (3), is essential to provide a general
framework to solve the problem for different inlet temperatures or
even when mould and inlet temperature are different. Otherwise,
the large viscosity variation within the problem domain evinces
the strong non-Newtonian behaviour of the polymer melt, being
dominated by the shear rate and directly affected by the velocity
gradient.
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